

CPCR 2010 Conference The University of Manchester

A risk sensitive measure of individual vulnerability to poverty

Gabriela Flores a,b, Owen O'Donnell b,c

^a IEMS, University of Lausanne, Switzerland ^b Erasmus University, The Netherlands ^c University of Macedonia, Greece

Motivation

- Growing interest in evaluating individual's vulnerability to poverty
- 1 general definition:

VP= the risk of falling into/further into poverty in **future**≠ state of poverty due to uncertainties about living standard

- Many measures and estimations methods
- BUT lack of clear theoretical foundations

Contributions

- Focus on the measurement of VP defined as expected poverty from a theoretical & empirical point of view
- Show that assumptions made for measurement can jeopardize the ex-ante evaluation of VP
- Use a conceptual framework to propose a risk-sensitive measure of individual VP consistent with standard functional forms of welfare and estimation methods

Literature review

- Ravallion, 1988: Theoretical foundations for the measurement of aggregated poverty under risk-induce welfare variability
- Chaudhuri et al, 2001, 2002: Defines individual VP as expected poverty
 - Empirically VP=mathematical expectation of a poverty indicator
 - Key choices: Poverty indicator, consumption generating process, time horizon
- Ligon & Schechter, 2004: Evaluate approaches to estimate vulnerability. Key dimension: the time series properties of consumption.
- Calvo & Dercon, 2005: Axiomatic foundations. Focus on downside-risk and risk aversion.

Operational choices & assumptions

Authors	Poverty index	Probability distribution	Time series properties of consmpt.	Data
Chaudhuri et al, 2001	Headcount (HC)	Unconditional Log-normal	Stationarity & ergodicity	Cross- section
Zhang & Wan, 2008	"	66	Stationarity	Panel
McCulloh&Calandrino, 2003	66	Unconditional Normal	66	66
Christiansen& Subbaro, 2005	Foster et al, 1984 class	Conditional Log-Normal	"	Pseudo- panel
Calvo & Dercon, 2005	Chakravarty, 1983	Not expl. specified	Stationarity, AR1	ee
Pritchett et al, 2000	66	66	Non- stationarity	ee
Mansuri & Haly, 2001	Headcount	Conditional Normal	Non- stationarity	Panel

Empirically each choice and assumption has been independently considered from each other. Result in dif. Vulnerability index

Implications of operational choices & assumptions

- Functional form of poverty indices reflects risk aversion
- **(Log-)Normality + Headcount =** ONLY Parametric index of VP BUT increase in risk can reduce VP!
- Expectation of other proposed index: no close form solution → "ad-doc" estimation methods:
 - Measurement of Pov(E[y]) \neq E[Pov(y)]
 - Econometric model: predict $lny \neq y \rightarrow Pov(lny) \neq Pov(y)$
- Ergodicity: cross-sectional variation can be used to proxy individual's intertemporal variation

Implications of stationarity & conditional moments

Ex: AR(1) process, covariance stationarity

$$\ln y_t^i = \alpha \ln y_{t-1}^i + \eta^i + v_t^i$$

Conditional moments depends on information set availabe at time T

(1)
$$E[\ln y_{T+1}^i \mid \Omega_T^i] = \eta^i + \alpha \ln y_T^i$$
 (2) $Var[\ln y_{T+1}^i \mid \Omega_T^i] = Var(v_T^i) + c$

>> Ensure identification of VP in period T +1: truly forward - looking approach

Unconditional expectation caracterize over life - span:

(3)
$$E[\ln y_{T+1}^i] = E[\ln y_T^i] = \frac{\eta^i}{1-\alpha}$$
 (4) $V[\ln y_T^i] = \frac{Var[v_T^i] + c}{1-\alpha^2}$

- >> Identify individuals' underlying permanent risk of poverty
- >> measuring VP = measuring Chronic poverty
- >> "only" because probabilistic approach takes into account welfare variability

PANEL DATA NEED!

CROSS - SECTIONS : Stationary & Ergodic & IID process!!!

Our choices & Assumptions

I. Utility poverty gap indices (Chakravarty & Muliere, 2004)

Watts, 1968:
$$\pi_w(\mathbf{u}, y_{t+1}^i, z) = (\ln z - \ln y_{t+1}^i),$$

Haggenaars, 1987:
$$\pi_{HAG}(\mathbf{u}, y_{t+1}^i, z) = \frac{\pi_W}{\ln z}$$

Log function → CRRA (poor more risk averse)

- II. Log-normality + Watts (I) parametric expression. Properties defined at aggregated level (Muller, 2001).
- I & II → Concavity in stochastic variable + strict convexity of poverty index ensures risk-sensitivity (Ravallion, 1988)
 → Sensitive to the potential depth of future poverty
- III. Conditional distribution, Stationarity, Panel data

A new index of Individual VP

$$V_{i,T}^{W} = \Phi\left(\frac{\ln z - \mathbf{E}_{T}^{i}\left(u, y_{i,T+1}\right)}{\sqrt{\mathbf{Var}_{T}^{i}\left(u, y_{i,T+1}\right)}}\right) * \left\{ \ln z - \left[\mathbf{E}_{T}^{i}\left(u, y_{i,T+1}\right) - \sqrt{\mathbf{Var}_{T}^{i}}\lambda_{T}\right] \right\}$$

An Expected Poverty Gap Measure $\in [0, + \infty[$ The threat of the severity of poverty

- Depends on conditional expectation and variance of future welfare (1 period ahead)
- Decomposable into vulnerability due to high welfare volatility and/or low expected welfare

Illustration

Bulgaria, 1994: Monthly data from January to December.

Use 11 months to forecast the expected severity of poverty of the last month.

Estimation methods:

- AR process to forecast cond. Expectation. Variance of residuals = measure of risk
 (system GMM estimation, Blundell and Bond, 1998)
- Sample mean and variance over first 11 months

Dependent variable is the logarithm of consumption per capita, $lny_{i,t}$, system GMM estimation results

Education level	Rural	Urban	
of the Head:	some educ. coef(se) II	some educ. coef(se) IV	
Lagged welfare, $lny_{i,t-1}$	0.07** (0.026)	0.11*** (0.025)	
2nd order lag, $lny_{i,t-2}$	(0.020)	0.09*** (0.020)	
3rd order lag, , $lny_{i,t-3}$		0.03* (0.016)	
Lagged income	0.24*** (0.068)	0.13* (0.092)	
Lagged age of head	(0.000)	0.00 (0.012)	
Lagged family size		(0.012)	
Lagged log. age of head	1.32***		
Lagged log. Fam. size	(0.127) $0.36**$ (0.132)	0.31** (0.233)	
Number of observations	6370	11008	
Number of individuals	654	1379	
Av. nb. of obs. per individual	9.74	7.98	
m1	-13.71***	-19.675***	
m2	.012	0756	

^{* , ** , ***} denote significance at 5%, 1% and 0.1% significance level.

Notes:

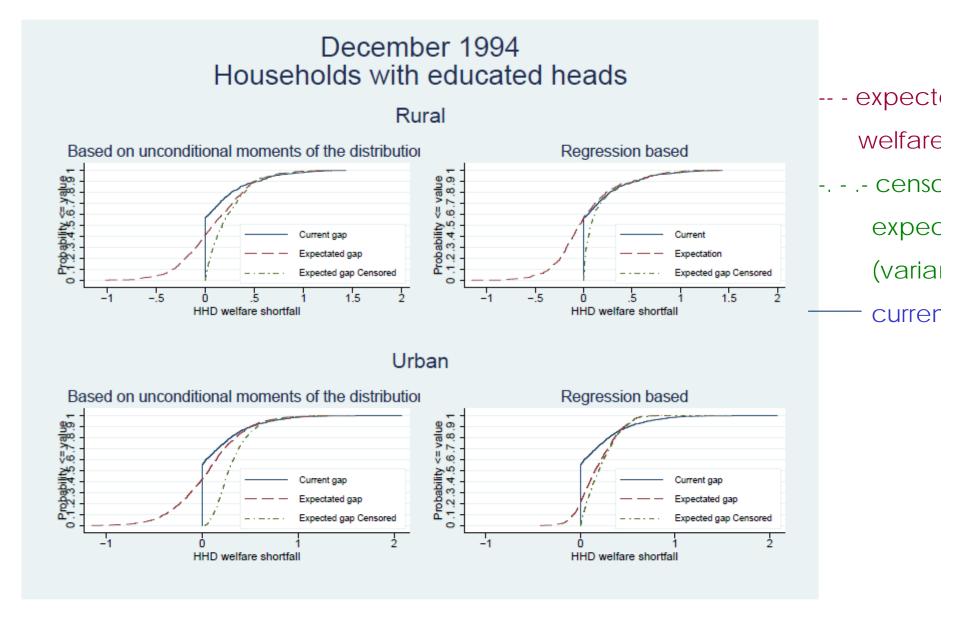


Figure 7: Cumulative distribution of hhds' expected censored welfare shortfall under the assumption of log-normality

Table 5: Current and Expected Watts Poverty Gap, Bulgaria, December 1994

	Watts poverty gap ratio Expected from the perspective of November, based on		
by Household			
characteristics	conditional expectation ¹ and variance of residuals	unconditional expectation ² unconditional variance	
Rural	0.19	0.28	
Head has no education	0.34	0.39	
Head has some education ³	0.15	0.26	
${f Urban}$	0.17	0.25	
Head has no education	0.37	0.37	
Head has some education	0.16	0.24	
Bulgaria	0.17	0.26	

Source: Household Budget Survey Bulgaria 1994. Author's own calculation.

Notes: The conditional expected welfare is calculated using the predictions from the dynamic linear par model (see Table 3). The variance of the residuals are used to proxy uninsured risk exposure.

² The unconditional expectation and variance are calculated using each household's sample mean and variance of per capita welfare over the months January to November. ³ Education leve of the head of the household are primary, secondary or post-secondary.

Conclusion

Possible to derive an index of individual vulnerability that is consistent with:

- behavioral assumptions about risk
- the stochastic underlying process of consumption
- can be estimated from "standard" econometric models that focus on the conditional expectation of log consumption

Unconditional moments preferred only

- in the absence of information about recent observations
- panel with unequally spaced data
- if one is willing to forecast welfare in the far future.

Stationary assumption does not allow individuals to escape poverty permanently!

Relaxing stationarity:

- only changes in poverty are identifiable!
- Use the life-cycle assumption (Hall, 1897). Sceptical! Why? Based on:
- Quadratic preferences → income risk plays no role in optimal intertemporal consumption plan (Blundell & Stocker, 1999)
- Perfect credit markets
- Known constant interest rate